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Part I
Modelling Money in General Equilibrium: a Primer

Lecture 1
The Basic MIU model

Leopold von Thadden
University of Mainz and ECB (on leave)

Monetary Theory and Policy, Summer Term 2011
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I Motivation
General remarks

→ What is the role of money in market-based economies?
→ How does the economy react to changes in monetary policy?
→ How should monetary policy be conducted?

To address questions of this type, there exists a well established tradition in
monetary economics to distinguish between ‘long-run’and ‘short-run’features

Long-run:

Quantity theory tradition predicts that money is neutral (‘money does not
matter’), ie this view starts out from a fundamental ‘dichotomy’between
real and nominal variables

Neutrality properties of money are associated with the long-run position
of the economy under flexible prices
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I Motivation
General remarks

Short-run:

At ‘given’prices and for given private sector beliefs about future policies,
money is not neutral

Keynesian and Monetarist traditions disagree about the implications of
this non-neutrality

Keynesian tradition:
→ typically stresses slow and often fragile self-stabilizing forces of the
economy
→ typically assigns to monetary (and fiscal) policies an active role to
stabilize the economy

Monetarist tradition:
→ is more optimistic about self-stabilizing forces
→ expresses scepticism about the ability of policymakers to fine-tune the
economy
→ prefers a rules-based approach over ad hoc interventions
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I Motivation
General remarks

Part I of the Lecture:

→ deals only with long-run features
→ discusses in detail a particular monetary version of the neoclassical
growth model with flexible prices, the ‘money-in-the-utility-function’model,
due to Patinkin (1965) and Sidrauski (1967)

But let us first do 3 things:

Confirm that the motivation for such modelling approach is anchored in a
time-honoured tradition

Establish some stylized long-run monetary facts from the empirical
literature

Mention possible modelling alternatives
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I Motivation
Some quotes from the history of monetary economics

David Hume:

"...Augmentation in the quantity of money has no other effect than to
heighten the price of labour and commodities...In the progress toward
these changes, the augmentation may have some influence, by exciting
industry, but after the prices are settled...it has no manner of influence.
Though the high price of commodities be a necessary consequence of the
increase of gold and silver, yet it follows not immediately upon that
increase; but some time is required before the money circulates through
the whole state...It is only in this interval of intermediate situation,
between the acquisition of money and rise of prices, that the increasing
quantity of gold and silver is favourable to industry...We may conclude
that it is of no manner of consequence, with regard to the domestic
happiness of a state, whether money be in greater or less quantity."

Essays and Treatises, 1752
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I Motivation
Some quotes from the history of monetary economics

John Stuart Mill:

"There cannot ... be intrinsically a more insignificant thing, in the
economy of society, than money; except in the character of a contrivance
for sparing time and labour. It is a machine for doing quickly and
commodiously, what would be done, though less quickly and
commodiously, without it: and like many other kinds of machinery, it
only exerts a distinct and independent influence of its own when it gets
out of order."

Principles of Political Economy, 1848
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I Motivation
Some quotes from the history of monetary economics

Milton Friedman:

"The monetary authority controls nominal quantities - directly, the
quantity of its own liabilities. In principle, it can use this control to peg a
nominal quantity - an exchange rate, the price level, the nominal level of
national income, the quantity of money by one or another definition - or
to peg the rate of change in a nominal quantity - the rate of inflation or
deflation, the rate of growth or decline in nominal national income, the
rate of growth of the quantity of money.
It cannot use its control over nominal quantities to peg a real quantity -
the real rate of interest, the rate of unemployment, the level of real
national income, the real quantity of money, the rate of growth of real
national income, or the rate of growth of the real quantity of money."

The Role of Monetary Policy, 1968
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I Motivation
Stylized monetary facts

The study by McCandless and Weber (1995):

establishes 3 stylized facts which offer widely quoted (but not in all
dimensions entirely undisputed) empirical benchmark findings

is based on time series data for 110 countries for the time period from
1960-1990

calculates for each country long-run averages of the growth rates of real
GDP, consumer price inflation and 3 definitions of money (M0, M1,
M2), using comparable IMF-data, where
M0: currency plus bank reserves
M1: money easily used in transactions
M2: money easily used or converted into use for transactions

allows for two homogenous subsamples of countries: i) 21 OECD
countries and ii) 14 Latin American countries

investigates such broad cross section (rather than just a single country) to
make sure that the results do not depend on country-specific policy rules
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I Motivation
Stylized monetary facts

Finding 1 on money growth and inflation:
(see Tables 1 and 2 and Chart 1 from McCandless and Weber, 1995)

→ "In the long run, there is a high (almost unity) correlation between
the rate of growth of the money supply and the rate of inflation. This
holds across three definitions of money and across the full sample of
countries and two subsamples."
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I Motivation
Stylized monetary facts

Finding 1 on money growth and inflation: some comments

Correlations for the broader definitions of money (M1, M2) with inflation
are both approximately 0.95 and slightly larger than that for the narrow
definition of money (M0) which stands at 0.925

The nearly linear relationship has a slope close to unity (see Chart 1),
in line with predictions from the quantity equation

M · V = P · Y
which becomes, when written in terms of growth rates,

gM + gV = gP + gY

The 45-degree line in Chart 1 does not go through the origin, implying
that long-run inflation is not only determined by the growth rate of
money, but as well by the growth rates of real output and velocity

For very low inflation environments, the linear relationship becomes
fragile (see Teles and Uhlig, 2010 )
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I Motivation
Stylized monetary facts

Finding 2 on money growth and real output growth:
(see Tables 3 and 4 and Charts 2 and 3 from McCandless and Weber,
1995)

→ "In the long run, there is no correlation between the growth rates of
money and real output. This holds across all definitions of money, but
not for a subsample of OECD countries, where the correlation seems to
be positive."
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I Motivation
Stylized monetary facts

Finding 2 on money growth and real output growth: some comments

For the full sample, correlation coeffi cients are lower than −0.05 and
statistically not significantly different from 0

Sub-sample of OECD countries is a certain exception:
→ Correlation coeffi cients are higher than 0.5 (and highest for M0
growth)
→ But the magnitude of the relationship is small (ie the slope coeffi cient
in Chart 3 is 0.1) and it is unlikely that it reflects a casual (and
exploitable) relationship from money growth to real output growth
→ Instead it seems to be driven by a similarity of feedback rules running
from real output growth to money growth
→ The finding for the sub-sample of OECD countries is contested by
other studies (going back to Geweke, 1986) which favour superneutrality
(ie a zero correlation)
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I Motivation
Stylized monetary facts

Finding 3 on inflation and real output growth:
(see Tables 5 and 6 and Chart 4 from McCandless and Weber, 1995)

→ "In the long run, there is no correlation between inflation and real
output growth. This finding holds across the full sample and both
subsamples."
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I Motivation
Stylized monetary facts

Finding 3 on inflation and real output growth: some comments

Finding 3 obtains after correcting for a single and ‘unusual’country
observation, ie w/o Nicaragua the correlation coeffi cient for the remaining
109 countries is −0.101 (and not significantly different from 0)

For the OECD the coeffi cient is positive, but, again, not significantly
different from 0

Other studies (like Barro, 1995 ) find significantly negative correlations
when allowing for non-linearities, implying that in high inflation
environments the correlations are strongly negative, while in low inflation
environments the effects become fragile
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I Motivation
Alternative modelling approaches

→ How to incorporate money into modern general equilibrium approaches?

1) MIU model inserts real balances into the utility function of agents

Alternatives:
2) Various ways to impose that certain transactions (like purchases of goods or
trades in assets) are costly w/o money, creating thereby a positive demand for
real balances
→ example: Cash-in-advance models (see Part II of the Lecture)
3) Treat money like other assets to transfer resources intertemporally
(Samuelson 1958 )
→ moreover, when being dominated in return by other assets, money may
receive support through additional assumptions like legal restrictions

Caveat: All these approaches involve one way or the other non-trivial shortcuts
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II Model ingredients

Features of the basic MIU Model (Walsh, Section 2.2)

flexible prices

deterministic set-up

perfect foresight

no labour supply decision, ie per capita labour supply is fixed at
nls ≡ 1
exogenous and constant population growth:
Nt = (1+ n)Nt−1, n > 0
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II Model ingredients

Objective of representative household:

max
∞

∑
t=0

βtu(ct ,mt ) β ∈ (0, 1) (1)

Properties of flow utility u(ct ,mt ) :

continuously differentiable, increasing in both arguments, and
strictly concave

(A 1): suffi cient (and mild) condition to ensure a monetary
equilibrium with mt > 0 :
(i) um(c ,m)|m=0 → ∞ ∇c > 0,
(ii) there exists some (possibly large) satiation value of m such that
um(c ,m)|m=m = 0 ∇c > 0
(→ below we consider variations of (A1))
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II Model ingredients

Technology:
Neoclassical aggregate production function with

Yt = F (Kt−1,Nt )

In period t, aggregate output Yt is a function F of two inputs:
contemporaneous labour (Nt ) and predetermined capital (Kt−1)

Function F has constant returns to scale

Per capita output (yt ≡ Yt
Nt
):

yt =
F (Kt−1,Nt )

Nt
= F (

Kt−1
Nt

, 1) ≡ f ( kt−1
1+ n

) = f (k ′t−1) with: k
′
t−1 ≡

kt−1
1+ n

(A 2): Properties of per capita output y = f (k ′):

f is continuously differentiable, fk (k ′) > 0, fkk (k ′) < 0

Inada conditions: (i) fk (k ′))|k ′=0 → ∞, (ii) fk (k ′))|k ′→∞ = 0
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II Model ingredients

Aggregate private sector budget constraint in real terms:

Yt + τtNt + (1− δ)Kt−1 +
(1+ it−1)Bt−1 +Mt−1

Pt
= Ct +Kt +

Bt +Mt
Pt

τt : Per capita lump-sum transfer

Bt−1 : Nominal amount of aggregate government bonds;
bought in period t − 1; paying out (1+ it−1)Bt−1 in period t,
it−1 > 0 : nominal interest rate on gov’t bonds, assumed to be non-negative

Mt−1 : Nominal amount of aggregate money holdings;
‘bought’in period t − 1; paying out Mt−1 in period t,
iMt−1 ≡ 0 : nominal interest rate on (outside) money is zero

Pt : aggregate price level in period t of the single economy-wide good
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II Model ingredients

Per capita private sector budget constraint in real terms:
Dividing the previous equation by Nt yields:

f (
kt−1
1+ n

) + τt + (1− δ)
kt−1
1+ n

+
(1+ it−1)bt−1 +mt−1
(1+ n)(1+ πt )

= ct + kt + bt +mt

(2)
with:

bt =
Bt
PtNt

,mt =
Mt
PtNt

inflation defined as Pt
Pt−1
≡ 1+ πt

and using:

(1+ it−1)Bt−1
PtNt

=
(1+ it−1)
(1+ n)Nt−1

Bt−1
Pt−1

Pt−1
Pt

=
(1+ it−1)bt−1
(1+ n)(1+ πt )

Mt−1
PtNt

=
1

(1+ n)Nt−1

Mt−1
Pt−1

Pt−1
Pt

=
mt−1

(1+ n)(1+ πt )

→ From now on, define the real interest rate as:

1+ rt−1 =
1+ it−1
1+ πt

20 / 87



Motivation Model ingredients Lagrange solution Steady state Stability: graphics Stability: analytics

II Model ingredients

Per capita government budget constraint in real terms:

τt +
1+ rt−1
1+ n

bt−1 +
1

(1+ n)(1+ πt )
mt−1 = bt +mt (3)

Write equivalently as:

τt +
1+ rt−1
1+ n

bt−1 = bt +mt −
1

(1+ n)(1+ πt )
mt−1︸ ︷︷ ︸

Seigniorage

Simplifying assumptions:

no government consumption (gt ≡ 0) or government investment
no distortionary (regular) taxes
(→ to be removed in Part II of the Lecture)

τt adjusts endogenously to balance (3) ∇t > 0
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III Solution based on Lagrange multipliers

Characterization of competitive equilibrium requires, inter alia,
to solve an intertemporal optimization of the representative
household

To solve such problems (here: in discrete time) various techniques
exist

We solve the problem by the Lagrange multiplier approach

Later we will verify that the value function approach used by
Walsh leads to the same results

in case you find continuous time ‘easier’:
→ good treatment of MIU-model in Blanchard and Fisher (1989)!

→ Next slide: overview of maximization problem of representative
household and the first-order conditions (FOCs) of an interior optimum
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III Solution based on Lagrange multipliers

Maximize (1) s.t. budget constraint (2) over ct ,mt , bt , kt :

max
∞

∑
t=0

βt [u(ct ,mt )

+λt{f (
kt−1
1+ n

)+ τt +(1− δ)
kt−1
1+ n

+
(1+ it−1)bt−1 +mt−1
(1+ n)(1+ πt )

− ct − kt −bt −mt}]

FOCs (interior) w.r.t. ct ,mt , bt , kt (∇t > 0):
uc (c t ,mt )−λt = 0 (4)

um(c t ,mt )−λt + βλt+1
1

(1+ n)(1+ πt+1)
= 0 (5)

−λt + βλt+1
1+ it

(1+ n)(1+ πt+1)
= 0 (6)

−λt + βλt+1
fk (k ′t ) + 1− δ

1+ n
= 0 (7)

Transversality condition: lim
t→∞

βtλtxt = 0 x = k , b,m (8)

λt : shadow value of period t income (in terms of utility of period t)
βtλt : shadow value of period t income (in terms of utility of period 0)
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III Solution based on Lagrange multipliers

Elimination of λt and λt+1 in the FOCs yields:

From (6), (7): Arbitrage condition between physical capital and real
bonds (assumed to be perfect substitutes)

1+ rt = 1+ fk (k
′
t )− δ (9)

leading to the Fisher equation

1+ it = (1+ fk (k
′
t )− δ)(1+ πt+1) (10)

From (4), (5): Intertemporal consumption optimality (Euler equation)

uc (c t ,mt ) = β
1+ rt
1+ n

uc (c t+1,mt+1) (11)

From (4)-(6): Intratemporal optimal allocation between consumption
and real balances

um(c t ,mt )
uc (c t ,mt )

=
it

1+ it
(12)

where it
1+it

measures the opportunity cost of holding money
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III Solution based on Lagrange multipliers

Interpretation of (12): ‘Opportunity cost of holding money’

→ How to optimally allocate one extra euro between real balances and
consumption in period t?

in period t, 1 extra Euro makes up 1
pt
units of real balances, yielding

1
pt
um(c t ,mt ) marginal utility

since money is dominated in return by bonds, there is an opportunity cost
to this, ie one loses it

pt+1
units of period-t + 1 goods. When discounted

this amounts to a loss of it
pt+1(1+rt )

period-t goods and an associated

marginal loss of it
pt+1(1+rt )

uc (c t ,mt ) utility

→ Equating 1
pt
um(c t ,mt ) and

it
pt+1(1+rt )

uc (c t ,mt ) yields eq (12), ie

um(c t ,mt ) =
it

1+ it
uc (c t ,mt )
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III Solution based on Lagrange multipliers

Competitive equilibrium:

representative household takes all prices as given

prices settle down at values such that all markets clear and resulting
allocations are consistent with individually optimal behaviour

Implication: combination of budget constraints of the private sector and of the
government yields the resource constraint of the economy, ie combine

f (
kt−1
1+ n

) + τt + (1− δ)
kt−1
1+ n

+
(1+ it−1)bt−1 +mt−1
(1+ n)(1+ πt )

= ct + kt + bt +mt

and

τt +
1+ rt−1
1+ n

bt−1 +
1

(1+ n)(1+ πt )
mt−1 = bt +mt

to obtain the (per capita) resource constraint

f (
kt−1
1+ n

) + (1− δ)
kt−1
1+ n

= ct + kt (13)
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III Solution based on Lagrange multipliers

Comments: How to read equations (4)-(8)?

necessary conditions for optimality (and suffi cient conditions come
from A1 and A2)

concept of optimality applies to sequences of variables, ie (4)-(8)
form a system of difference equations characterizing the behaviour
of the competitive equilibrium over time

crucial for the exact time paths of variables consistent with such
system: initial and terminal conditions
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III Solution based on Lagrange multipliers

Remark 1: Initial conditions

Assumption (A 3): The economy starts to operate in t = 0, taken as
given the exogenous sequence {Nt}, the predetermined real value K−1 as
well as the nominal values M−1, B−1, i−1

→ This distinction between nominal and real initial values has implications for
the (per capita) dynamics of the system of equilibrium equations:

Capital (k) is a state variable (with predetermined initial value k−1)

Gov’t liabilities (m, b) are not state variables, since the real value of
M−1 + i−1B−1 in terms of period-0 goods, ie

M−1+i−1B−1
P0

is not
predetermined.
Why ? the period-0 price level P0 is not predetermined, ie
P0 is determined within the competitive equilibrium, beginning in t = 0

c is not a state variable, since c−1 does not enter any of the equations

→ k is the single predetermined (state) variable
→ other variables are forwardlooking (control) variables w/o initial conditions
→ this feature becomes important below (when we discuss stability issues)
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III Solution based on Lagrange multipliers

Remark 2: Terminal conditions

The transversality condition (8) closes the system by backward
induction from the (distant) future

Intuition: consider for some future period T > 0 the terms
βT λT xT (x = k, b,m). They describe the present value of the
utility that could be obtained if the assets get consumed at T rather
than invested

If T is the terminal period it cannot be optimal, not to consume
everything at T

Infinite horizon analogy: As T → ∞, it cannot be optimal to
postpone consumption forever, ie lim

T→∞
βT λT xT = 0 x = k, b,m

[In class we will consider a decentralized version of the MIU model and
confirm that the transversality condition ensures that the private sector
flow budget constraint can be transformed into a well-defined
intertemporal budget constraint which restricts the borrowing behaviour
of households]
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IV Core steady state features

From now on, consider 3 simplifying assumptions:

I) Constant population size

n = 0, ie Nt = N, ∇t > 0

II) Zero level of equilibrium government bonds

Bt = 0, ∇t > 0
→ Why is this assumption unproblematic?

III) Constant money growth rule

Mt = (1+ θ)Mt−1, ∇t > 0, with θ ≥ θ
(in the examples analyzed below we will assume θ ≥ 0)
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IV Core steady state features

Implications of III) of constant money growth, ie Mt = (1+ θ)Mt−1:

Write the law of motion of the inflation rate as

1+ πt+1 =
Pt+1
Pt

=
Mt
Pt

Pt+1
Mt+1

(1+ θ) =
mt
mt+1

(1+ θ) (14)

implying that in steady states, satisfying m > 0, we have

1+ π = 1+ θ

Similarly, write the law of motion of the nominal interest rate as

1+ it = (1+ fk (kt )− δ︸ ︷︷ ︸
1+rt

)
mt
mt+1

(1+ θ) (15)

implying that in steady states, satisfying m > 0, we have

1+ i = (1+ r)(1+ θ)
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IV Core steady state features

Summary of intertemporal equilibrium conditions:
Using (14) and (15), rewrite (11), (12), and (13) as:

Euler equation:

β(1+ fk (kt )− δ︸ ︷︷ ︸
1+rt

)uc (ct+1,mt+1) = uc (ct ,mt ) (16)

Resource constraint:

ct + kt = f (kt−1) + (1− δ)kt−1 (17)

Allocation between consumption and real balances:

1
(1+ θ)(1+ rt )

uc (ct ,mt ) ·mt+1 = [uc (ct ,mt )− um(ct ,mt )] ·mt (18)
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IV Core steady state features

Summary of steady state conditions:
Consider the preceding 3 equations in steady state

Euler equation:

β · (1+ r)︸ ︷︷ ︸
1+fk (k )−δ

= 1 ⇔ fk (k) =
1
β
− 1+ δ (19)

Resource constraint:
c = f (k)− δk (20)

Allocation between consumption and real balances:

β

1+ θ
uc (c ,m) ·m = [uc (c ,m)− um(c ,m)] ·m (21)
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IV Core steady state features

Existence of steady state:

fk (k) =
1
β
− 1+ δ

c = f (k)− δk
β

1+ θ
uc (c ,m) ·m = [uc (c ,m)− um(c ,m)] ·m

System has a recursive structure:

1st equation determines a unique value k∗ > 0 (because of A 2)

2nd equation determines a unique value c∗(k∗) > 0

3rd equation: under mild assumptions (like A 1 and θ > θ ≈ −r),
there exists m∗(c∗, k∗) > 0, satisfying um = i

1+i uc = (1−
β
1+θ )uc

and respecting the ‘zero lower bound constraint’i > 0

Steady-state government budget constraint (‘behind the scenes’):

τ =
θ

1+ θ
m
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IV Core steady state features

Robust steady state features of the MIU model
→ It supports the dichotomy between real and nominal variables in terms
of neutrality and superneutrality

fk (k) =
1
β
− 1+ δ

c = f (k)− δk
β

1+ θ
uc (c ,m) ·m = [uc (c ,m)− um(c ,m)] ·m

I) Neutrality (∆M):

The 3 equations are independent of the level of the nominal money
stock M, ie they fix the variables k, y , c , r , m in real terms, and, for
a given value of M, one obtains the price level P = M/m

π and i are independent of the level of M

a change in M leads to a proportionate change in the price level P
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IV Core steady state features

Robust steady state features of the MIU model

fk (k) =
1
β
− 1+ δ

c = f (k)− δk
β

1+ θ
uc (c ,m) ·m = [uc (c ,m)− um(c ,m)] ·m

II) Superneutrality (∆θ):

k, y , c , r are independent of the growth rate (θ) of the nominal
money stock M

a change in θ affects π and i , respectively, ‘one-to-one’(using
i ≈ r∗ + π)

Moreover: since i captures the opportunity costs of holding money,
a change in θ affects m via um = i

1+i uc (whenever m > 0)
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IV Core steady state features

Fragile features of the MIU model

I) Non-superneutrality during transitional dynamics

Outside the steady state (during ‘transitional dynamics’),
superneutrality is, in general, not preserved

Only under very special assumptions, like additively separable
preferences in c and m, ie

u(c ,m) = ν(c) + φ(m),

superneutrality prevails during the transitional dynamics
(to be discussed below)
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IV Core steady state features

Fragile features of the MIU model

II) Steady-state multiplicity

if

um =
i

1+ i
uc = (1−

β

1+ θ
)uc

has a unique positive solution m∗ > 0, eq (21) may have a 2nd solution if
we allow for the degenerate case of m = 0

crucial in this context: structure of u(c ,m)

(famous) result by Obstfeld/Rogoff (1983):
Assume θ > 0 and consider u(c ,m) = ν(c) + φ(m).
Then, the (seemingly) strong assumption:

(i) φm(m)|m=0 → ∞, (ii) φm(m)|m→∞ = 0

is not suffi cient to rule out a 2nd steady state with m∗2 = 0
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IV Core steady state features

Fragile features of the MIU model

III) Stability

(Saddle-path) Stability of 1st steady state with m∗1 > 0 cannot
always be taken for granted in view of II):
→ global stability issues under multiple steady states solutions!

→ (remote?) possibility of a ‘non-fundamental’(ie: solely
speculative) hyperinflation in a world of pure fiat money,
consistent, for example, with a constant money supply (θ = 0)
(see: Obstfeld/Rogoff, 1983)
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V Stability of steady states

Let us take these features as a motivation to do 2 things:
→ i) understand the economic intuition behind them
→ ii) learn about backward and forward elements of solutions of systems
of deterministic difference equations

Preview of what is to come below: 2 tractable example economies s.t.:

1) Non-negative money growth: θ > 0
2) Cobb-Douglas production function: y = kα

3) Additively separable preferences: u(c ,m) = ν(c) + φ(m)

(Standard) Example 1: ν(c) + φ(m) = log(c) + log(m)
→ to be shown: unique steady state (with m > 0) and locally (saddle-path)
stable dynamics
(Degenerate) Example 2: ν(c) + φ(m) = log(c) + 1

1−σm
1−σ, σ ∈ (0, 1)

→ to be shown: two steady states (with m1 > 0, m2 = 0), possibility of
hyperinflationary dynamics converging against m2
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V Stability of steady states

Special case: recursive dynamics under additively separable preferences
→ from now onwards, use u(c ,m) = ν(c) + φ(m) within (16)-(18):

Euler equation:
β(1+ fk (kt )− δ︸ ︷︷ ︸

1+rt

)νc (ct+1) = νc (ct ) (22)

Resource constraint:

ct + kt = f (kt−1) + (1− δ)kt−1 (23)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Allocation between consumption and real balances:

B(ct , kt ,mt+1) ≡
1

(1+ θ)(1+ rt )
νc (ct ) ·mt+1 = [νc (ct )−φm(mt )] ·mt ≡ A(ct ,mt )

(24)

(22) and (23) form a sub-system in ct and kt (ie independent of mt )

conditional on saddlepath-stability of (22)-(23), (in-)stability of the
sequence mt around (k∗, c∗) governed by the one-dimensional difference
equation (24)
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V Stability of steady states

Recursive dynamics under additively separable preferences

β(1+ fk (kt )− δ︸ ︷︷ ︸
1+rt

)νc (ct+1) = νc (ct )

ct + kt = f (kt−1) + (1− δ)kt−1

B(ct , kt ,mt+1) ≡
1

(1+ θ)(1+ rt )
νc (ct ) ·mt+1 = [νc (ct )−φm(mt )] ·mt ≡ A(ct ,mt )

Transversality condition: lim
t→∞

βtλtxt = 0 x = k , b,m

3 dynamic equations hold for all t > 0
→ 1st and 2nd equation have variables with index t − 1, t, and
t + 1, but we can transform them to obtain a two-dimensional
system of first-order difference equations

42 / 87



Motivation Model ingredients Lagrange solution Steady state Stability: graphics Stability: analytics

V Stability of steady states

→ Use the transformation
ct ≡ cTt−1

to replace the sub-system in ct and kt by the transformed sub-system in cTt
and kt s.t. ∇t > −1 :

β(1+ fk (kt+1)− δ︸ ︷︷ ︸
1+rt+1

)νc (cTt+1) = νc (cTt ) (25)

cTt + kt+1 = f (kt ) + (1− δ)kt (26)

[In class we will show that this transformation does not affect the
sequence of events, ie the transformed system in c and k and the initial
system are equivalent]

→ Moreover, dynamics of (24) around a steady state with (k∗, c∗) satisfy

B(mt+1) ≡
β

1+ θ
νc (c∗) ·mt+1 = [νc (c∗)− φm(mt )] ·mt ≡ A(mt ) (27)
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V Stability of steady states
Notion of saddle-path stability

→ Recall from above:

k is the single (backward-looking) state variable of the dynamic
system (with predetermined initial value kt−1)

c and m are two (forward-looking) control variables w/o initial
conditions

→ This feature is picked up by the notion of a saddle-path stable
solution of the system (25)-(27)

→ Idea: combine the single initial condition kt−1 and two terminal
conditions (restricting cTt+T and m

T
t+T , assuming T → ∞, and derived

from the TV-condition) to find a solution of the form (∇t ≥ −1))
kt+1 = χ(kt )

cTt = ξ1(kt ), mTt = ξ2(kt )

→ In general, the functions χ and ξ1, ξ2 will be non-linear.
Approximate solutions rely on linear functions, characterizing a linearized
version of the system (25)-(27) 44 / 87
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V Stability of steady states
Linearized dynamics

Recursive dynamics of the linearized system:
→ The system (25)-(27) is non-linear. ‘Way out’?
→ Analysis of a linearized system, obtained from a 1st-order Taylor
expansion of (25)-(27) around some steady state (k∗, c∗,m∗) :[

cTt+1 − c∗
kt+1 − k∗

]
= A ·

[
cTt − c∗
kt − k∗

]
(28)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

mt+1 −m∗ = am · (mt −m∗) (29)

A is a 2x2-matrix, with coeffi cients evaluated at the steady state, ie

A =
[
a11(k∗, c∗) a12(k∗, c∗)
a21(k∗, c∗) a22(k∗, c∗)

]
Similarly, am is a scalar, with am = am(k∗, c∗,m∗)
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V Stability of steady states
Graphical characterization

Dynamics of the linearized system: phase diagrams
→ Below we will explore further how to solve analytically such linearized
systems
→ Let us first find a graphical representation of their stability behaviour,
using phase diagrams

→ We do this for the 2 example economies, respectively, in two steps:

Step 1: Calculation of steady states values
(and check: unique vs. multiple steady states)

Step 2: Construction of phase diagrams around the steady state
with m > 0
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V Stability of steady states
Graphical characterization: example economy 1

Example 1: θ > 0, y = kα, and ν(c) + φ(m) = log(c) + log(m)

Step I: steady state calculation

From (19), ie fk (k∗) =
1
β − 1+ δ = α(k∗)α−1 :

k∗ = (
αβ

1− β+ δβ
)

1
1−α > 0

From (20), ie: c∗ = (k∗)α − δk∗ :

c∗ = (
αβ

1− β+ δβ
)

α
1−α − δ(

αβ

1− β+ δβ
)

1
1−α > 0

From (21), ie
β

1+ θ

1
c∗
m∗︸ ︷︷ ︸

A(m)

=
1
c∗
m∗ − 1︸ ︷︷ ︸
B (m)

:

m∗ =
1+ θ

1+ θ − β
· c∗ > 0

→ unique values k∗ >, c∗ > 0, m∗ > 0
→ notice: no second steady solution m∗ = 0 !
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V Stability of steady states
Graphical characterization: example economy 1

Example 1: θ > 0, y = kα, and ν(c) + φ(m) = log(c) + log(m)

Step II: Phase diagram around k∗ > 0, c∗ > 0, m∗ > 0

Step II involves in itself a 2-step procedure:
IIa) → establish (local) saddlepath-stability of the subsystem (25)-(26)
in cTt and kt around k∗ > 0, c∗ > 0
(notice: for this step the particular specifications of f (k) and
ν(c) + φ(m) do not matter)

IIb) → establish saddlepath-stability of the difference equation in mt
(27) around m∗ > 0, taken as given k∗ > 0, c∗ > 0
(notice: for this step the specification of ν(c) + φ(m) as
log(c) + log(m) matters)
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V Stability of steady states
Graphical characterization: example economy 1

Step IIa): Phase diagram of the subsystem (25)-(26) in cTt and kt
→ we need 1st order approximate versions of eqns (25) and (26), with
‘appropriate’terms of type ∆ct+1 and ∆kt+1:

for the Euler equation (25) use

νc (cTt+1) ≈ νc (cTt ) + νcc (cTt ) · (cTt+1 − cTt )︸ ︷︷ ︸
∆cTt+1

to rewrite (25) approximately as

β(1+ fk (kt+1)− δ)[νc (cTt ) + νcc (cTt ) · ∆cTt+1︸ ︷︷ ︸
≈ νc (cTt+1)

]) ≈ νc (cTt )

⇔ ∆cTt+1 ≈ −
νc (cTt )

νcc (cTt )
· [1− 1

β(1+ fk (kt+1)− δ)
]

Moreover, use ∆cTt+1 = ∆ct+2 and shift the eqn back by one period to get

⇔ ∆ct+1 ≈ −
νc (ct )
νcc (ct )

· [1− 1
β(1+ fk (kt )− δ)

] (30)
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V Stability of steady states
Graphical characterization: example economy 1

Step IIa): Phase diagram of the subsystem in ct and kt

Dynamic implication of the just established eqn (30), ie

∆ct+1 ≈ −
νc (ct )
νcc (ct )

· [1− 1
β(1+ fk (kt )− δ)

]

notice: − νc (ct )
νcc (ct )

> 0

eqn features no dynamics in k, only in c

→ if kt = k∗ ⇒ ∆ct+1 = 0 and

∆ct+1 Q 0 if kt R k∗
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V Stability of steady states
Graphical characterization: example economy 1

Step IIa): Phase diagram of the subsystem in ct and kt

for the resource constraint (26), no approximation needed, ie rewrite

cTt + kt+1 = f (kt ) + (1− δ)kt

as
∆kt+1 = f (kt )− δkt − cTt (31)

Dynamic implication of (31):

eqn features no dynamics in c , only in k

→ if cTt = f (kt )− δkt ⇒ ∆kt+1 = 0 and

∆kt+1 Q 0 if cTt R f (kt )− δkt
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V Stability of steady states
Graphical characterization: example economy 1

Step IIa): Phase diagram of the subsystem in ct and kt

→ Combine the information contained in the two expressions

∆ct+1 Q 0 if kt R k∗

∆kt+1 Q 0 if cTt R f (kt )− δkt

to represent the dynamics in ct and kt via a phase diagram:

Here: Figure 1 (Example 1: Dynamics in c and k)

52 / 87



Motivation Model ingredients Lagrange solution Steady state Stability: graphics Stability: analytics

V Stability of steady states
Graphical characterization: example economy 1

Step IIa): Comments on the phase diagram of the subsystem in ct and kt

Arrows in Figure 1 indicate regions of stability and instability around
k∗ > 0, c∗ > 0

Important information not yet used: (i) k > 0, and (ii) TV-condition (8)
For any initial departure of the state variable such that k−1 6= k∗ :
Saddle-path configuration, i.e. there exists a unique choice of the
control variable c such that the economy jumps on the saddlepath and
converges over time towards the steady state k∗, c∗

For all other choices, the dynamics ultimately drift away from k∗, c∗

Moreover, such choices can be ruled out because the economy would
eventually hit
either: a ‘path of rising consumption and falling capital’on which k
would become negative (but this cannot be)
or: a ‘path of falling consumption and rising capital’on which the
present value of lifetime consumption would become smaller than the
present value of lifetime income (but this cannot be optimal)
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V Stability of steady states
Graphical characterization: example economy 1

Step IIb): Phase diagram of mt around m∗ > 0, taken as given
k∗ > 0, c∗ > 0

→ using ν(c) + φ(m) = log(c) + log(m), (27) becomes:

B(mt+1) ≡
β

1+ θ

1
c∗
·mt+1 =

1
c∗
mt − 1 ≡ A(mt ) (32)

⇔ mt+1 =
1+ θ

β︸ ︷︷ ︸
am>1

mt −
1+ θ

β
c∗ (33)

→ no linearization needed,ie
dynamics in mt governed by a linear first-order difference equation
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V Stability of steady states
Graphical characterization: example economy 1

Step IIb): Phase diagram of mt around m∗ > 0, taken as given
k∗ > 0, c∗ > 0

→ to represent the dynamics of (32) in mt via a phase diagram, use

β

1+ θ

1
c∗
<
1
c∗
,

ie the slope coeffi cient of B(mt+1) is smaller than the one of A(mt ) :

Here: Figure 2 (Example 1: Dynamics in m)
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V Stability of steady states
Graphical characterization: example economy 1

Step IIb): Comments on the phase diagram of the dynamics in mt

Arbitrary initial values of type m′0 or m
′′
0 in Figure 2 lead to unstable

dynamics, moving away from m∗.
This reflects that (33) is for arbitrary initial values an unstable difference
equation (in the backwardlooking sense).

But the backwardlooking perspective is misleading since the sequence mt
has no initial condition, ie if m0 jumps directly to the unique value m∗

dynamics are stable (and the absence of transitory dynamics is a special
case of forward-looking saddlepath-stability)

Moreover, m0 = m∗ is optimal, since:
if m′0 < m

∗, mT becomes negative for some finite horizon T (but this
cannot be) and
if m′′0 > m

∗, mt grows at the rate 1+θ
β . However, the TV-condition (8)

requires
lim
T→∞

βT · υc (c∗) ·mT = 0

and θ > 0 implies that this condition will be violated (but this cannot be)
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V Stability of steady states
Example economy 1

Interpretation and comments:

In terms of economic insights, the particular specification of additively
separable preferences used in Example 1 illustrates that the basic MIU
model has the potential to extend superneutrality to transitory dynamics,
ie the specification supports the notion that ‘money can act as a veil’in
the strongest possible sense

In terms of its technical features, example 1 exhibits a unique steady
state with (locally) saddlepath stable dynamics, ie by combining the
restrictions from both initial and terminal conditions the dynamics of all
variables are stable and uniquely defined around this steady state

This concept is a standard one which is routinely used in macro-models
with forward-looking agents

In stochastic extensions of models of this type it implies that small
shocks (within the neighbourhood around a steady state) trigger stable
and predictable reactions of optimizing agents such that the economy
eventually returns to the starting point
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V Stability of steady states
Example economy 1

Interpretation and comments:

In large-scale macro models (used for forecasts and policy simulations),
which, in any case, are not recursive, this configuration cannot be verified
in simple phase diagrams. Instead, these models need to be solved
numerically. Yet, the basic intuition for the possibility of
saddlepath—stable dynamics of such systems is in line with example 1

Criticism: for saddlepath-stable configurations, the role of the
‘fundamentals of the economy’(here captured by the single value k−1) is
very strong (and for many applications too strong)

Alternative view:
→ Models should allow for self-fulfilling fluctuations, driven by
non-fundamental ‘animal spirits’(Keynes).
→ With equally simple model ingredients, this can be achieved if the
dynamics implied by the system of difference equations are somewhat
different, leading to locally indeterminate (but still stable) dynamics
(and we will briefly return to this when we sketch the analytics of stability
issues below)
→ More far-reaching criticism: rational expectations assumption as
such to be modified (eg via learning) or entirely abandoned
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V Stability of steady states
Graphical characterization: example economy 2

Example 2: θ > 0, y = kα, and ν(c) + φ(m) = log(c) + 1
1−σm

1−σ, σ ∈ (0, 1)

Step I: steady state calculation

From (19), (20): values of k∗ and c∗ identical with those of example 1, ie:

k∗ = (
αβ

1− β+ δβ
)

1
1−α > 0 and c∗ = (

αβ

1− β+ δβ
)

α
1−α − δ(

αβ

1− β+ δβ
)

1
1−α > 0

From (21), ie
β

1+ θ

1
c∗
m∗︸ ︷︷ ︸

A(m)

=
1
c∗
m∗ − (m∗)1−σ︸ ︷︷ ︸

B (m)

:

m∗1 = (
1+ θ

1+ θ − β
· c∗) 1σ > 0

m∗2 = 0

→ unique positive values k∗ >, c∗ > 0, m∗1 > 0
→ but: existence of a 2nd solution m∗2 = 0 !
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V Stability of steady states
Graphical characterization: example economy 2

Example 2: θ > 0, y = kα, and ν(c) + φ(m) = log(c) + 1
1−σm

1−σ, σ ∈ (0, 1)

Step II: Phase diagram around k∗ >, c∗ > 0, m∗1 > 0

Step II, again, involves in itself a 2-step procedure:
IIa) → identical to example 1, ie (local) saddlepath-stability of the subsystem
(25)-(26) in cTt and kt around k∗ > 0, c∗ > 0
(remember: for this step the particular specifications of f (k) and ν(c) + φ(m)
do not matter)

IIb) → saddlepath-stability of the difference equation in mt (27) around
m∗1 > 0, taken as given k

∗ > 0, c∗ > 0, vanishes since dynamics may converge
against m∗2 = 0
(notice: for this step the specification of ν(c) + φ(m) as log(c) + 1

1−σm
1−σ,

σ ∈ (0, 1) matters)
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V Stability of steady states
Graphical characterization: example economy 2

Step IIb): Phase diagram of mt around m∗1 > 0, for given k
∗ > 0, c∗ > 0

→ Using ν(c) + φ(m) = log(c) + 1
1−σm

1−σ, (27) becomes

B(mt+1) ≡
β

1+ θ

1
c∗
·mt+1 =

1
c∗
mt − m1−σ

t︸ ︷︷ ︸
φmt (mt )·mt

≡ A(mt ) (34)

→ According to (34), dynamics governed by a non-linear first-order difference
equation in mt

→ Linearized version of (34) around m∗1 = (
1+θ
1+θ−β · c∗)

1
σ > 0 (where only the

term φmt (mt ) ·mt on the RHS of (34) requires linearization)
β

1+ θ

1
c∗
· (mt+1 −m∗1 ) = [

1
c∗
− (1− σ)(m∗1 )

−σ](mt −m∗1 )

⇔ mt+1 −m∗1 = [ σ
1+ θ

β
+ 1− σ︸ ︷︷ ︸

am>1 for ∇ σ∈(0,1)

] · (mt −m∗1 ) (35)
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V Stability of steady states
Graphical characterization: example economy 2

Step IIb): Phase diagram of mt around m∗1 > 0, taken as given
k∗ > 0, c∗ > 0

→ represent the dynamics of the original, non-linearized equation (34)
in mt via a phase diagram:

Here: Figure 3 (Example 2: Dynamics in m)
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V Stability of steady states
Graphical characterization: example economy 2

Step IIb): Comments on the phase diagram of the dynamics in mt

Complete (ie non-linear) configuration is much richer than the linearized
dynamics around m∗1
Again, for arbitrary initial values of m0 6= m∗1 dynamics are unstable
→ if m′′0 > m

∗
1 :

all paths to be ruled out by violations of the TV-condition (see ex. 1)

if m′0 < m
∗
1 :

→ in general, also to be ruled out: mT will become negative for large T
→ yet: for some value m′0 < m

∗ dynamics converge against m∗2 = 0
→ specifically: if the system hits m̃ it moves in the next period to m∗2 = 0
→ this requires an infinite jump in the price level (‘hyperinflation’)
→ and then the system stays at m∗2 = 0 forever
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V Stability of steady states
Graphical characterization: example economy 2

Step IIb): Comments on the phase diagram of the dynamics in mt

Important: dynamics towards m∗2 = 0 do not violate the optimality
conditions derived from forwardlooking behaviour. Why?
→ At m̃ to be satisfied:

φm(m̃) = νc (c∗)

→ Compare this with the first-order condition:

φm(mt ) =
it

1+ it
=

1

1+ 1
it

= νc (c∗)

→ Use it = (1+ r ∗) · Pt+1Pt
− 1. Hence, for given Pt , it → ∞ as

Pet+1 → ∞ (‘rationally expected hyperinflation’), implying it
1+it
→ 1 such

that φm(m̃) = νc (c∗) can be rationalized
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V Stability of steady states
Graphical characterization: example economy 2

Step IIb): Comments on the phase diagram of the dynamics in mt

Technically, what is the difference between the 2 examples?
→ in Example 1: lim

m→0
φ(m)→ −∞, while in Example 2: lim

m→0
φ(m) = 0

→ To rule out the possibility of hyperinflationary dynamics (ie Ex. 1),
money must be so necessary that the utility loss is suffi ciently large (ie
infinite!) if real balances go to zero
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V Stability of steady states
Example economy 2

Interpretation and comments:

In terms of its technical features, example 2 illustrates some important insights

The linearization of macroeconomic models, while often inevitable, can
come at a significant cost since the ‘global’behaviour of economies can
be very different from predictions obtained from ‘local’characterizations:
→ in our case: the possibility of hyperinflationary dynamics would not
have been captured if we had used the linear equation (34) instead of the
original non-linear one (35)

The existence of multiple steady states leads to global coordination
problems and questions of equilibrium selection

These issues are at odds with the strong uniqueness property of
saddlepath-stable solutions
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V Stability of steady states
Example economy 2

Interpretation and comments:
In terms of economic insights, example 2 has a number of interesting and
partly controversial features:

The possibility of a purely speculative hyperinflation (where for θ > 0 real
balances mt ultimately go to zero, ie πt rises faster than θ, leading to a
complete collapse of the monetary equilibrium) is the flip side of the
complete dichotomy between the nominal and real side of the model

Neutrality and superneutrality facilitate the possibility of a self-fulfilling
and ‘de-coupled’hyperinflation which does not affect the real side of the
economy

→ How plausible is this? Why should it better be seen as a ‘degenerate’story?

The qualification as a ‘degenerate’scenario does not refer per se to the
particular functional choice of ν(c) + ϕ(m) = log(c) + 1

1−σm
1−σ

It rather refers to a well-understood fragility of the model itself

→ To rule out the hyperinflationary scenario not much is needed: as long as
the central bank stands ready to guarantee some minimal real redemption
value for money, non-fundamental hyperinflationary dynamics, by
backward-induction, can never take off 67 / 87
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V Stability of steady states
Example economy 2

Interpretation and comments:

→ in reality, such qualifications of pure fiat money regimes exist, ie
central banks hold reserves like gold and implement their standing
operations by investing in different types of assets
→ interesting different traditions of monetary policy implementation:

US: tradition of ‘treasuries only’(outright purchases); recently
extended to various private paper facilities

Eurosystem: tradition of accepting government and private paper
as collateral; recently extended to outright purchases of (some)
gov’t paper

in either tradition: recognition of (crisis-related) lender of last
resort function of central banks to stem financial panics (via
discount window)
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VI Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:
→ Reconsider the above established linearized system (28)-(29),ie:[

cTt+1 − c∗
kt+1 − k∗

]
= A ·

[
cTt − c∗
kt − k∗

]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

mt+1 −m∗ = am · (mt −m∗) ,

→ where A =
[
a11(k∗, c∗) a12(k∗, c∗)
a21(k∗, c∗) a22(k∗, c∗)

]
is a 2x2-matrix and

am = am(k∗, c∗,m∗) is a scalar

Aim:
→ i) Derive analytically the saddlepath-stable solution of the linearized
dynamics around (k∗, c∗,m∗)
→ ii) Extend the reasoning to a general classification of stability patterns of
linear systems where A is a nxn-matrix and we have n1 predetermined and
n2 = n− n1 forwardlooking variables
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VI Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:

→ The (in)stability of linearized systems of difference equations is
determined by their characteristic roots or, equivalently, their eigenvalues,
denoted by λ

→ A 3x3-system has generically 3 distinct eigenvalues (and, for
simplicity, we consider |λi | 6= 1)

→ Special constellation of (28)-(29): because of the independence of
(29), the dynamics in mt are governed by λ3 = am , while λ1 and λ2 are
linked to the 2x2-matrix A
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VI Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:
Consider first:

mt+1 −m∗ = am︸︷︷︸
λ3

· (mt −m∗)

→ The eigenvalue am induces a linear mapping such that the scalar argument
(mt −m∗) is scaled up or down over time, depending on whether |am | ≷ 1

Backwardlooking interpretation:
If |λ3 | < 1 : stability for arbitrary initial conditions mt 6= m∗

Forwardlooking interpretation (see Ex 1 and 2):
→ Since mt introduced as a forwardlooking variable w/o initial (but with
terminal) condition stability requires |λ3 | > 1
→ Why? Rewrite the eqn as

mt −m∗ =
1

λ3
(mt+1 −m∗) = (

1
λ3
)T · (mt+T −m∗),

implying mt = m∗ since the term mt+T −m∗ is bounded by the terminal
condition such that lim

T→∞
( 1λ3 )

T · (mt+T −m∗) = 0
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VI Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:

Consider now: [
cTt+1 − c∗
kt+1 − k∗

]
= A ·

[
cTt − c∗
kt − k∗

]
→ Is there a counterpart to the just discussed scalar am = λ3 for the
2x2-system governed by A?

→ To simplify notation let ht+1 = A · ht with: ht ≡
[
cTt − c∗
kt − k∗

]
→ Special case: Assume

A · ht = λ · ht = ht+1,

ie the matrix A induces a linear mapping such that the vector argument ht is
scaled up or down over time, depending on whether |λ| ≷ 1
In such special case denotes:
i) the scalar λ an eigenvalue of the matrix A
ii) the vector h ≡ q an eigenvector of A, associated with the eigenvalue λ
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VI Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:

→ From the eqn
A · q = λ · q

eigenvalues solve the equation

[A− λI ] · q = 0, with: I = [
1 0
0 1

]

→ For non-trivial solutions (ie q 6= 0), the matrix [A− λI ] needs to be
‘singular’(ie the inverse of [A− λI ] does not exist), leading to the so-called
characteristic equation:

|A− λI | = 0 ⇔
∣∣∣∣ a11 − λ a12

a21 a22 − λ

∣∣∣∣ = 0
Equivalently, the characteristic equation can be written as

λ2 − (a11 + a22︸ ︷︷ ︸)
Tr (A)

λ+ (a11a22 − a12a21)︸ ︷︷ ︸
Det(A)

= 0 (36)
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VI Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:

→ The characteristic eqn (36) is a quadratic eqn in λ
→ There exist generically two different eigenvalues λ1 and λ2, ie

λ1,2 =
1
2
· Tr (A)± 1

2
·
√
(Tr (A))2 − 4 ·Det(A)

→ with associated eigenvectors q1 = (
µ1

q1 · µ1
) and q2 = (

µ2
q2 · µ2

)

→ since each λi generates 2 linearly dependent equations, the associated
eigenvectors have a unique direction (via q i ), but not a particular length

Some simplifying notation:
→ 2x2−Matrix Q of stacked eigenvectors:

Q = [q1 q2 ] = [
µ1 µ2

q1 · µ1 q2 · µ2
]

→ 2x2−Diagonal matrix Λ of eigenvalues:

Λ = [
λ1 0
0 λ2

]
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VI Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:

→ Write the definition of eigenvalues and eigenvectors in matrix form:

A ·Q = A · [q1 q2 ] = [q1 q2 ] · [
λ1 0
0 λ2

] = Q ·Λ

→ Since Q ·Q−1 = I , rewrite the matrix A via its ‘Jordan canonical form’:

A = Q ·Λ ·Q−1,

where it is customary to order the eigenvalues in Λ by size (starting with the
smallest one in the top left corner of Λ)

→ The inverse matrix Q−1 of Q is also 2x2-matrix:

Q−1 =
1

Det(Q)
[
q2 · µ2 −µ2
−q1 · µ1 µ1

] ≡ [ q̃11 q̃12
q̃21 q̃22

]
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VI Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:

→ Define a new vector zt containing linear combinations of the initial
variables with weights taken from Q−1 such that

zt = (
z1,t
z2,t

) = Q−1 · ht ,

ie
z1,t = q̃11 · h1,t + q̃12 · h2,t and z2,t = q̃21 · h1,t + q̃22 · h2,t

→ Rewrite the initial 2x2−system (28), ie

ht+1 = A · ht ,
using A = Q ·Λ ·Q−1 as

Q−1 · ht+1 = zt+1 = Λ · zt (37)

Notice: Since Λ is a diagonal matrix, eqn (37) consists of two ‘de-coupled’
first-order difference eqns, qualitatively similar to (29), ie we can write it as

z1,t+1 = λ1 · z1,t
z2,t+1 = λ2 · z2,t 76 / 87
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VI Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:

→ The pair of equations

z1,t+1 = λ1 · z1,t and z2,t+1 = λ2 · z2,t (38)

describe the general solution of the 2x2−system

ht+1 = A · ht

→ Equivalently, the general solution can be written as

ht = (
h1,t
h2,t

) = (
µ1

q1 · µ1
) · λt1 + (

µ2
q2 · µ2

) · λt2 (39)

→ Using either (38) or (39), the definite solution can be obtained if one uses
the initial and terminal conditions

[In class we will consider some numerical examples to see how this works]

77 / 87



Motivation Model ingredients Lagrange solution Steady state Stability: graphics Stability: analytics

VI Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:
→ Recall: one predetermined variable (k) and one forwardlooking variable (c)
→ Assume: |λ1 | < 1 and |λ2 | > 1

[In class we will verify that the matrix A derived from the linearized eqns
(25) and (26) generically satisfies this pattern of eigenvalues]

Since |λ2 | > 1 solve the second eqn z2,t+1 = λ2 · z2,t
forward, ie rewrite it as

z2,t =
1

λ2
· z2,t+1 = (

1
λ2
)T · z2,t+T

and deduce from lim
T→∞

( 1λ2 )
T · z2,t+T = 0 the solution

z2,t = q̃21 · h1,t︸︷︷︸
cTt −c ∗

+ q̃22 · h2,t︸︷︷︸
kt−k ∗

= 0,

implying that the forwardlooking (control) variable c should be set s.t.

cTt − c∗ = −
q̃22
q̃21
· (kt − k∗) (40)
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VI Stability of steady states: analytical solution

Analytical characterization of the (in)stability of linearized systems:

→ What about the dynamics in (kt − k∗) ?
→ Use the first eqn

z1,t+1 = λ1 · z1,t with: z1,t = q̃11 · h1,t + q̃12 · h2,t

→ Substitute eqn (40),ie

cTt − c∗︸ ︷︷ ︸
h1,t

= − q̃22
q̃21
· (kt − k∗)︸ ︷︷ ︸

h2,t

.

in the first eqn to obtain

[q̃12 − q̃11
q̃22
q̃21
] · (kt+1 − k∗) = λ1 · [q̃12 − q̃11

q̃22
q̃21
] · (kt − k∗),

implying for the law of motion of the state variable k :

kt+1 − k∗ = λ1 · (kt − k∗) (41)
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VI Stability of steady states: analytical solution
Comments on the solution and generalizations

Solution:

→ The two eqns (40) and (41), ie

kt+1 − k∗ = λ1 · (kt − k∗)

cTt − c∗ = ct+1 − c∗ = −
q̃22
q̃21
· (kt − k∗)

are the solutions, summarizing ∇t > −1 the behaviour of the linearized
versions of (25) and (26), as captured by the matrix A, along the linear
saddlepath until convergence of kt and cTt against k∗ and c∗

→ The derivation of (40) and (41) has used that we have 1 stable and 1
unstable eigenvalue which we have matched with the single initial and the
single terminal condition
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VI Stability of steady states: analytical solution
Comments on the solution and generalizations

Initializing the system at t = −1 :

→ Recall: k−1 is the single initial condition of the system (40) and (41)
→ Consider the two eqns at t = −1, ie

k0 − k∗ = λ1 · (k−1 − k∗)

cT−1 − c∗ = c0 − c∗ = −
q̃22
q̃21
· (k−1 − k∗),

implying that we managed to initialize the law of motion for kt and ct by the
single initial condition k−1
→ for all t > −1 : unique values of kt and ct determined recursively by (40)
and (41)
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VI Stability of steady states: analytical solution
Comments on the solution and generalizations

Cross-equation restriction:

Equations of type (40), ie

cTt − c∗ = −
q̃22
q̃21
· (kt − k∗)

are examples of cross equation restrictions
In general, restrictions of this type, going back to Lucas (1976), are a key
feature of macro-models which incorporate forwardlooking behaviour and
are intimately linked to the so-called Lucas critique
This critique revolutionized macroeconomic analysis 40 years ago

The Lucas critique says that econometricians who want to estimate a
relationship like (40) need to be aware that coeffi cients like −q̃22/q̃21
consist not only of structural (‘deep’) parameters like α, β or δ, but also
of policy parameters (like θ)

In particular, changes in parameters of policy rules do affect such
coeffi cients, implying that policy advice based on past estimates of
such coeffi cients will be systematically wrong
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VI Stability of steady states: analytical solution
Comments on the solution and generalizations

Cross-equation restriction (cont’d):

Remark: for the special system characterized by additively separable
preferences the single policy parameter θ does not enter the dynamics
governed by A, ie for this very special system the Lucas critique does not
apply

However, in general, assuming non-separable preferences with
u = u(c ,m) such that one obtains a fully integrated 3x3−system in kt , ct
and mt , the Lucas critique does apply. In other words, the coeffi cient
linking consumption and capital (and, hence, output) will be a function of
the policy parameter θ

In case policymakers announce a systematic change in their policy rule
(here: ‘change in θ’), forwardlooking agents will incorporate this in their
decisions. Policy-advice not internalizing this reaction will be misleading
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VI Stability of steady states: analytical solution
Comments on the solution and generalizations

Generalization I (Large-scale deterministic linear systems):

→ Consider an economy characterized by n1 predetermined (or state)
variables with initial conditions and n2 = n− n1 forwardlooking (or control)
variables with terminal conditions

ht+1 =
[
hPt+1
hFt+1

]
= A ·

[
hPt
hFt

]
= A · ht ,

where A is a nxn−matrix, h is a nx1−vector and hP and hF are n1x1 and
n2x1−vectors of predetermined and forwardlooking variables, respectively
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VI Stability of steady states: analytical solution
Comments on the solution and generalizations

Generalization I (Large-scale deterministic linear systems):

Blanchard-Kahn (1980) conditions:

If the system is to have a unique stationary equilibrium, n1 eigenvalues
of the matrix A need to satisfy |λi | < 1, i = 1, 2, .., n1, while n2
eigenvalues need to satisfy

∣∣λj ∣∣ > 1, j = n1 + 1, .., n.
If there are fewer than n2 eigenvalues with

∣∣λj ∣∣ > 1, then the system is
characterized by multiple stationary equilibria (indeterminacy)
If there are more than n2 eigenvalues with

∣∣λj ∣∣ > 1, then no solution
exists

If a unique stationary equilibrium exists, the solution takes the form:

hPt+1 = M · hPt and hFt = C · hPt
If there exist multiple stationary equilibria (indeterminacy):
→ possibility of self-fulfilling fluctuations (‘animal spirits’)
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VI Stability of steady states: analytical solution
Comments on the solution and generalizations

Comment 1: Unit roots

If eigenvalues satisfy the borderline case of |λi | = 1 (‘unit root’), the
classification can be adjusted:
If the system is to have a unique equilibrium, n1 eigenvalues of the
matrix A need to satisfy |λi | ≤ 1, i = 1, 2, .., n1, while n2 eigenvalues
need to satisfy

∣∣λj ∣∣ > 1, j = n1 + 1, .., n.
Intuition: Eigenvalues satisfying |λi | = 1 create special dynamics in the
sense that the system will not return to its starting point, but neither will
it explode

Numerically, such constellation is not generic (ie the probability that we
hit such special value for ‘arbitrary’matrices A is zero)

However, many models have deliberately a theoretical design such that
unit roots do matter (eg permanent as opposed to transitory technology
or taste shocks etc)
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VI Stability of steady states: analytical solution
Comments on the solution and generalizations

Comment 2: Level changes vs. percentage deviations

Typically, to make reactions between the various variables comparable,
the representative entries of hPt and h

F
t are specified as percentage

deviation of some variable from its steady state, like, eg,

hPi = k̂t =
kt − k∗
k∗

or hFj = ĉt =
ct − c∗
c∗

,

and not the absolute differences (as done above)

Variables with a hat-notation (k̂t , ĉt etc.) typically describe such
percentage deviation

This change in representation matters only at the stage when the
linearizations are done, but not afterwards

87 / 87


	Motivation
	Model ingredients
	Lagrange solution
	Steady state
	Stability: graphics
	Stability: analytics

